Test

Powered by Blogger.

Friday 27 April 2012

PL/sql placeholder

Advantages of PL/SQL
These are the advantages of PL/SQL.

    Block Structures: PL SQL consists of blocks of code, which can be nested within each other. Each block forms a unit of a task or a logical module. PL/SQL Blocks can be stored in the database and reused.

     Procedural Language Capability: PL SQL consists of procedural language constructs such as conditional statements (if else statements) and loops like (FOR loops).

     Better Performance: PL SQL engine processes multiple SQL statements simultaneously as a single block, thereby reducing network traffic.

    Error Handling: PL/SQL handles errors or exceptions effectively during the execution of a PL/SQL program. Once an exception is caught, specific actions can be taken depending upon the type of the exception or it can be displayed to the user with a message.

PL/SQL Placeholders

Placeholders are temporary storage area. Placeholders can be any of Variables, Constants and Records. Oracle defines placeholders to store data temporarily, which are used to manipulate data during the execution of a PL SQL block.
Depending on the kind of data you want to store, you can define placeholders with a name and a datatype. Few of the datatypes used to define placeholders are as given below.
Number (n,m) , Char (n) , Varchar2 (n) , Date , Long , Long raw, Raw, Blob, Clob, Nclob, Bfile

PL/SQL Variables

These are placeholders that store the values that can change through the PL/SQL Block.

The General Syntax to declare a variable is:

variable_name datatype [NOT NULL := value ];
    variable_name is the name of the variable.
    datatype is a valid PL/SQL datatype.
    NOT NULL is an optional specification on the variable.
    value or DEFAULT valueis also an optional specification, where you can initialize a variable.
    Each variable declaration is a separate statement and must be terminated by a semicolon.


For example, if you want to store the current salary of an employee, you can use a variable.

DECLARE

salary  number (6);

* “salary” is a variable of datatype number and of length 6.

When a variable is specified as NOT NULL, you must initialize the variable when it is declared.

For example: The below example declares two variables, one of which is a not null.

DECLARE

salary number(4);

dept varchar2(10) NOT NULL := “HR Dept”;

The value of a variable can change in the execution or exception section of the PL/SQL Block. We can assign values to variables in the two ways given below.

1) We can directly assign values to variables.
    The General Syntax is:        

  variable_name:=  value;

2) We can assign values to variables directly from the database columns by using a SELECT.. INTO statement. The General Syntax is:

SELECT column_name

INTO variable_name

FROM table_name

[WHERE condition];

Example: The below program will get the salary of an employee with id '1116' and display it on the screen.

DECLARE

 var_salary number(6);

 var_emp_id number(6) = 1116;

BEGIN

 SELECT salary

 INTO var_salary

 FROM employee

 WHERE emp_id = var_emp_id;

 dbms_output.put_line(var_salary);

 dbms_output.put_line('The employee '

      || var_emp_id || ' has  salary  ' || var_salary);

END;


/

NOTE: The backward slash '/' in the above program indicates to execute the above PL/SQL Block.

Scope of Variables

PL/SQL allows the nesting of Blocks within Blocks i.e, the Execution section of an outer block can contain inner blocks. Therefore, a variable which is accessible to an outer Block is also accessible to all nested inner Blocks. The variables declared in the inner blocks are not accessible to outer blocks. Based on their declaration we can classify variables into two types.

    Local variables - These are declared in a inner block and cannot be referenced by outside Blocks.
    Global variables - These are declared in a outer block and can be referenced by its itself and by its inner blocks.

For Example: In the below example we are creating two variables in the outer block and assigning thier product to the third variable created in the inner block. The variable 'var_mult' is declared in the inner block, so cannot be accessed in the outer block i.e. it cannot be accessed after line 11. The variables 'var_num1' and 'var_num2' can be accessed anywhere in the block.

1> DECLARE

2>  var_num1 number;

3>  var_num2 number;

4> BEGIN

5>  var_num1 := 100;

6>  var_num2 := 200;

7>  DECLARE

8>   var_mult number;

9>   BEGIN

10>    var_mult := var_num1 * var_num2;

11>   END;

12> END;

13> /

No comments:

Post a Comment

RSS

Categories

Followers

Blog Archive

Friday 27 April 2012

PL/sql placeholder

Advantages of PL/SQL
These are the advantages of PL/SQL.

    Block Structures: PL SQL consists of blocks of code, which can be nested within each other. Each block forms a unit of a task or a logical module. PL/SQL Blocks can be stored in the database and reused.

     Procedural Language Capability: PL SQL consists of procedural language constructs such as conditional statements (if else statements) and loops like (FOR loops).

     Better Performance: PL SQL engine processes multiple SQL statements simultaneously as a single block, thereby reducing network traffic.

    Error Handling: PL/SQL handles errors or exceptions effectively during the execution of a PL/SQL program. Once an exception is caught, specific actions can be taken depending upon the type of the exception or it can be displayed to the user with a message.

PL/SQL Placeholders

Placeholders are temporary storage area. Placeholders can be any of Variables, Constants and Records. Oracle defines placeholders to store data temporarily, which are used to manipulate data during the execution of a PL SQL block.
Depending on the kind of data you want to store, you can define placeholders with a name and a datatype. Few of the datatypes used to define placeholders are as given below.
Number (n,m) , Char (n) , Varchar2 (n) , Date , Long , Long raw, Raw, Blob, Clob, Nclob, Bfile

PL/SQL Variables

These are placeholders that store the values that can change through the PL/SQL Block.

The General Syntax to declare a variable is:

variable_name datatype [NOT NULL := value ];
    variable_name is the name of the variable.
    datatype is a valid PL/SQL datatype.
    NOT NULL is an optional specification on the variable.
    value or DEFAULT valueis also an optional specification, where you can initialize a variable.
    Each variable declaration is a separate statement and must be terminated by a semicolon.


For example, if you want to store the current salary of an employee, you can use a variable.

DECLARE

salary  number (6);

* “salary” is a variable of datatype number and of length 6.

When a variable is specified as NOT NULL, you must initialize the variable when it is declared.

For example: The below example declares two variables, one of which is a not null.

DECLARE

salary number(4);

dept varchar2(10) NOT NULL := “HR Dept”;

The value of a variable can change in the execution or exception section of the PL/SQL Block. We can assign values to variables in the two ways given below.

1) We can directly assign values to variables.
    The General Syntax is:        

  variable_name:=  value;

2) We can assign values to variables directly from the database columns by using a SELECT.. INTO statement. The General Syntax is:

SELECT column_name

INTO variable_name

FROM table_name

[WHERE condition];

Example: The below program will get the salary of an employee with id '1116' and display it on the screen.

DECLARE

 var_salary number(6);

 var_emp_id number(6) = 1116;

BEGIN

 SELECT salary

 INTO var_salary

 FROM employee

 WHERE emp_id = var_emp_id;

 dbms_output.put_line(var_salary);

 dbms_output.put_line('The employee '

      || var_emp_id || ' has  salary  ' || var_salary);

END;


/

NOTE: The backward slash '/' in the above program indicates to execute the above PL/SQL Block.

Scope of Variables

PL/SQL allows the nesting of Blocks within Blocks i.e, the Execution section of an outer block can contain inner blocks. Therefore, a variable which is accessible to an outer Block is also accessible to all nested inner Blocks. The variables declared in the inner blocks are not accessible to outer blocks. Based on their declaration we can classify variables into two types.

    Local variables - These are declared in a inner block and cannot be referenced by outside Blocks.
    Global variables - These are declared in a outer block and can be referenced by its itself and by its inner blocks.

For Example: In the below example we are creating two variables in the outer block and assigning thier product to the third variable created in the inner block. The variable 'var_mult' is declared in the inner block, so cannot be accessed in the outer block i.e. it cannot be accessed after line 11. The variables 'var_num1' and 'var_num2' can be accessed anywhere in the block.

1> DECLARE

2>  var_num1 number;

3>  var_num2 number;

4> BEGIN

5>  var_num1 := 100;

6>  var_num2 := 200;

7>  DECLARE

8>   var_mult number;

9>   BEGIN

10>    var_mult := var_num1 * var_num2;

11>   END;

12> END;

13> /

No comments:

Post a Comment