Test

Powered by Blogger.

Wednesday, 18 July 2012

JDBC Architecture

Two-tier and Three-tier Processing Models

The JDBC API supports both two-tier and three-tier processing models for database access.

Figure 1: Two-tier Architecture for Data Access.



In the two-tier model, a Java applet or application talks directly to the data source. This requires a JDBC driver that can communicate with the particular data source being accessed. A user's commands are delivered to the database or other data source, and the results of those statements are sent back to the user. The data source may be located on another machine to which the user is connected via a network. This is referred to as a client/server configuration, with the user's machine as the client, and the machine housing the data source as the server. The network can be an intranet, which, for example, connects employees within a corporation, or it can be the Internet.

In the three-tier model, commands are sent to a "middle tier" of services, which then sends the commands to the data source. The data source processes the commands and sends the results back to the middle tier, which then sends them to the user. MIS directors find the three-tier model very attractive because the middle tier makes it possible to maintain control over access and the kinds of updates that can be made to corporate data. Another advantage is that it simplifies the deployment of applications. Finally, in many cases, the three-tier architecture can provide performance advantages.
Figure 2: Three-tier Architecture for Data Access.
The DBMS-proprietary protocol provides two-way communication between the database server and the server machine. HTTP, RMI, CORBA or other calls provide two way communication between the server machine and the client machine

Until recently, the middle tier has often been written in languages such as C or C++, which offer fast performance. However, with the introduction of optimizing compilers that translate Java bytecode into efficient machine-specific code and technologies such as Enterprise JavaBeans™, the Java platform is fast becoming the standard platform for middle-tier development. This is a big plus, making it possible to take advantage of Java's robustness, multithreading, and security features.

With enterprises increasingly using the Java programming language for writing server code, the JDBC API is being used more and more in the middle tier of a three-tier architecture. Some of the features that make JDBC a server technology are its support for connection pooling, distributed transactions, and disconnected rowsets. The JDBC API is also what allows access to a data source from a Java middle tier.

No comments:

Post a Comment

RSS

Categories

Followers

Blog Archive

Wednesday, 18 July 2012

JDBC Architecture

Two-tier and Three-tier Processing Models

The JDBC API supports both two-tier and three-tier processing models for database access.

Figure 1: Two-tier Architecture for Data Access.



In the two-tier model, a Java applet or application talks directly to the data source. This requires a JDBC driver that can communicate with the particular data source being accessed. A user's commands are delivered to the database or other data source, and the results of those statements are sent back to the user. The data source may be located on another machine to which the user is connected via a network. This is referred to as a client/server configuration, with the user's machine as the client, and the machine housing the data source as the server. The network can be an intranet, which, for example, connects employees within a corporation, or it can be the Internet.

In the three-tier model, commands are sent to a "middle tier" of services, which then sends the commands to the data source. The data source processes the commands and sends the results back to the middle tier, which then sends them to the user. MIS directors find the three-tier model very attractive because the middle tier makes it possible to maintain control over access and the kinds of updates that can be made to corporate data. Another advantage is that it simplifies the deployment of applications. Finally, in many cases, the three-tier architecture can provide performance advantages.
Figure 2: Three-tier Architecture for Data Access.
The DBMS-proprietary protocol provides two-way communication between the database server and the server machine. HTTP, RMI, CORBA or other calls provide two way communication between the server machine and the client machine

Until recently, the middle tier has often been written in languages such as C or C++, which offer fast performance. However, with the introduction of optimizing compilers that translate Java bytecode into efficient machine-specific code and technologies such as Enterprise JavaBeans™, the Java platform is fast becoming the standard platform for middle-tier development. This is a big plus, making it possible to take advantage of Java's robustness, multithreading, and security features.

With enterprises increasingly using the Java programming language for writing server code, the JDBC API is being used more and more in the middle tier of a three-tier architecture. Some of the features that make JDBC a server technology are its support for connection pooling, distributed transactions, and disconnected rowsets. The JDBC API is also what allows access to a data source from a Java middle tier.

No comments:

Post a Comment